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This investigation presents a vibration analysis of a thin-walled box beam system having

angled joints by employing a higher-order beam theory that incorporates warping and

distortional degrees of freedom (dof) in addition to the standard Timoshenko dof. In the

proposed approach, no artificial spring is inserted between beams connected at an

angled joint, but a systematic technique to match all dof of the connected beams is

employed. There were similar efforts for static problems, but the vibration analysis

using a higher-order beam theory without using joint springs is carried out here for the

first time. Three cases were investigated: two box beams connected at an angled joint, a

curved box beam modeled by several straight box beams each of which meets an

adjacent beam at an angled joint, and a box beam forming a closed loop. The predicted

vibration results by the developed approach were compared with shell analysis results.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Fig. 1(a) illustrates two thin-walled box beams connected through an angled joint. Beam-based analysis for such a
system has attracted the interest of many researchers for various reasons. For example, in a very initial stage of automobile
body design, a simplified body-in-white (BIW) model consisting of beam and plate/shell elements is preferred (see, e.g.,
[1–4]). However, it is impossible to predict the vibration characteristics of a BIW accurately if a system of thin-walled
closed pillars and rails is modeled only by conventional six-degree of freedom beams. Because conventional beam theories
cannot account for cross-section deformations occurring especially near an angled joint, they predict too stiff structural
beam behavior. Consequently, the predicted eigenfrequencies by the conventional theories tend to be considerably higher
than the actual values and some eigenmodes are even missing. Therefore, the so-called joint springs, artificial elements,
have been introduced between beams meeting at angled joints to account for joint effects. There are a number of
investigations to estimate the spring stiffness [5–8], but it is impossible to correctly predict the flexibility effect of angled
joints uniformly valid for a range of frequencies. In other words, one can estimate the spring stiffness that matches one or
two eigenfrequencies, not all eigenfrequencies of interest.

The main objective of this investigation is to carry out the vibration analysis of piecewise straight thin-walled box
beams connected at a finite number of angled joints only by a beam theory without using artificial joint springs. To this
end, a higher-order beam theory having more dof than the Timoshenko beam theory is employed. A higher-order beam
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Fig. 1. (a) Thin-walled box beams connected at an angled joint and (b) a joint model consistent with a higher-order beam theory.

G.-W. Jang, Y.Y. Kim / Journal of Sound and Vibration 326 (2009) 647–670648
theory should include dof capable of representing cross-sectional deformations of warping and distortion. Earlier, the
sectional shape functions corresponding to warping and distortional dof were derived for quadrilateral closed cross-
sections [9] and for generally-shaped closed cross-sections [10]. The resulting one-dimensional vibration analysis taking
the warping and distortional dof into account was shown to give favorable results for straight beams without a joint. The
theory was also applied for the vibration analysis of a box beam T-joint [11]. The predicted eigenfrequencies by Kim et al.
[11] were quite accurate, but this method still needed a special element contracted from a detailed shell model.
Consequently, no existing paper seems to have conducted the vibration analysis of thin-walled closed beams without
special joint elements.

If no special joint element is to be introduced, the dof of two adjacent beams meeting at an angled joint must be directly
connected. In this case, the issue is how to impose the interface relation at the joint. The main difficulty appears when
warping and distortional dof are to be matched; unlike bending or torsional dof having nonzero force resultants, warping
and distortional dof have self-equilibrated force resultants. Therefore, the warping and distortional dof of two adjacent box
beams cannot be matched simply by considering the vector calculus of their force resultants. Recently, Jang et al. [12] and
Jang and Kim [13] have suggested joint interface relations for the warping and distortional dof by minimizing the difference
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between the three-dimensional displacements of two adjacent beams at an imaginary common interface section of the
angled joint. This section is denoted by Joint Section J in Fig. 1(b). However, no procedure for vibration analysis was
presented in their works.

In this investigation, the sectional deformation shapes and interfacing conditions given by Jang et al. [12] and Jang and
Kim [13] are employed to establish the vibration analysis of thin-walled closed box beams connected at an arbitrary angle.
We will consider not only in-plane but also out-of-plane vibrations. When thin-walled box beams are connected in the
same plane, the two types of vibrations are decoupled. Therefore, the kinetic energy and the strain energy of a beam system
connected at a joint can be decomposed into in-plane and out-of-plane parts, respectively. Therefore, the mass and stiffness
matrices of the beam system can be expressed separately for in-plane and out-of-plane deformations. This means that the
interface relations at Joint Section J are also decoupled between in-plane and out-of-plane cases. Because the higher-order
thin-walled beam elements are connected through the interface condition, there is no need to use artificial joints. The joint
flexibility should be properly represented if the interface conditions are correct.

In Section 2, a higher-order beam theory for a straight thin-walled box beam under in-plane and out-of-plane bending
deformations is presented along with its finite element formulation. In particular, the explicit forms of mass and stiffness
matrices for linear higher-order beam elements are derived. Section 3 gives the interface relations at an angled joint
between all field variables at Section A and those at Section B in Fig. 1(b) by setting up a minimization problem for the
three-dimensional displacements on Joint Section J. To verify the validity of the developed joint element-less beam analysis
for thin-walled box beams connected at angled joints, several numerical examples are considered. The predicted results by
the developed approach are compared with those obtained by the Timoshenko beam elements as well as those by detailed
shell elements. Concluding remarks are given in Section 5.

2. 10-DOF straight thin-walled beam theory and finite element implementation

In this section, the one-dimensional higher-order theory [12,13] for a rectangular thin-walled straight beam will
be presented and a finite element implementation based on the theory will be developed. Figs. 2 and 3 illustrate the
displacements of a box beam cross-section corresponding to 10 kinematic variables to be used for the higher-order beam
analysis. Five variables describing in-plane deformations are U (extension), VI (in-plane bending deflection), bI (in-plane
bending/shear rotation), WI (in-plane bending warping), and wI (in-plane bending distortion). Five variables describing
out-of-plane deformations are VO (out-of-plane bending deflection), bO (out-of-plane bending/shear rotation), y (torsional
rotation), WO (torsional warping), and wO (torsional distortion). Among these 10 variables, U, VI , bI , VO, bO, and y represent
rigid-body displacements/rotations of a box beam cross-section while (WI and WO) and (wI and wO) represent non-rigid-
body displacements of a cross-section. Note that out-of-plane bending warping and out-of-plane bending distortion are not
considered because those deformations are higher energy modes. The sectional displacement patterns will be denoted by
c’s of which the explicit forms are given in Appendix A along with Eqs. (2) and (3).

Because in-plane and out-of-plane displacements can be decoupled in straight box beams, the three-dimensional
displacements of the centerline of the cross-section can be written as the sum of the two parts:

unðs; zÞ ¼ uI
nðs; zÞ þ uO

n ðs; zÞ, (1a)

usðs; zÞ ¼ uI
sðs; zÞ þ uO

s ðs; zÞ, (1b)

uzðs; zÞ ¼ uI
zðs; zÞ þ uO

z ðs; zÞ, (1c)

where n and s denote the normal and tangential coordinates along the centerline of the cross-section, respectively, and z is
the axial coordinate (see Fig. 4). In Eqs. (1), uI

aðs; zÞ and uO
a ðs; zÞ ða ¼ n; s; zÞ refer to displacements in the direction of

a induced by in-plane and out-of-plane deformations, respectively. They are given as

uI
nðs; zÞ ¼ cU

n ðsÞUðzÞ þcVI
n ðsÞV

IðzÞ þcbI
n ðsÞb

I
ðzÞ þcWI

n ðsÞW
IðzÞ þcwI

n ðsÞwIðzÞ, (2a)

uI
sðs; zÞ ¼ cU

s ðsÞUðzÞ þ cVI
s ðsÞV

IðzÞ þ cbI
s ðsÞb

I
ðzÞ þ cWI

s ðsÞW
IðzÞ þcwI

s ðsÞwIðzÞ, (2b)

uI
zðs; zÞ ¼ cU

z ðsÞUðzÞ þcVI
z ðsÞV

IðzÞ þ cbI
z ðsÞb

I
ðzÞ þ cWI

z ðsÞW
IðzÞ þ cwI

z ðsÞwIðzÞ, (2c)

and

uO
n ðs; zÞ ¼ cVo

n ðsÞV
OðzÞ þ cbo

n ðsÞb
O
ðzÞ þ cy

nðsÞyðzÞ þcWo
n ðsÞW

OðzÞ þ cwo
n ðsÞwOðzÞ, (3a)

uO
s ðs; zÞ ¼ cVo

s ðsÞV
OðzÞ þcbo

s ðsÞb
O
ðzÞ þcy

s ðsÞyðzÞ þ cWo
s ðsÞW

OðzÞ þ cwo
s ðsÞwOðzÞ, (3b)

uO
z ðs; zÞ ¼ cVo

z ðsÞV
OðzÞ þ cbo

z ðsÞb
O
ðzÞ þcy

z ðsÞyðzÞ þcWo
z ðsÞW

OðzÞ þ cwo
z ðsÞwOðzÞ. (3c)
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Fig. 2. Sectional displacement/deformation patterns corresponding to one-dimensional displacement measures needed to describe in-plane bending

deformation of Section A in Fig. 1(b): (a) extension, (b) in-plane bending deflection, (c) in-plane bending/shear rotation, (d) in-plane bending warping, and

(e) in-plane bending distortion.

G.-W. Jang, Y.Y. Kim / Journal of Sound and Vibration 326 (2009) 647–670650
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Fig. 3. Sectional displacement/deformation patterns corresponding to one-dimensional displacement measures needed to describe out-of-plane bending

deformation of Section A in Fig. 1(b): (a) out-of-plane bending deflection, (b) out-of-plane bending/shear rotation, (c) torsional rotation, (d) torsional

warping, and (e) torsional distortion.

G.-W. Jang, Y.Y. Kim / Journal of Sound and Vibration 326 (2009) 647–670 651
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Fig. 4. Coordinates of a thin-walled box beam.

G.-W. Jang, Y.Y. Kim / Journal of Sound and Vibration 326 (2009) 647–670652
The sectional displacement patterns or the cross-section shape functions cðsÞ’s are illustrated in Figs. 2 and 3. By using
Eqs. (1)–(3), the three-dimensional displacements of a generic point on the cross-section can be determined:

~unðn; s; zÞ ¼ uI
nðs; zÞ þ uO

n ðs; zÞ, (4a)

~usðn; s; zÞ ¼ uI
sðs; zÞ þ uO

s ðs; zÞ � n
dcwI

n ðsÞ

ds
wIðzÞ � n

dcwo
n ðsÞ

ds
wOðzÞ, (4b)

~uzðn; s; zÞ ¼ uI
zðs; zÞ þ uO

z ðs; zÞ. (4c)

Using Eqs. (4), strains ð�ss; �sz; �zzÞ can be calculated as

�ssðn; s; zÞ ¼ �n
d2cwI

n ðsÞ

ds2
wIðzÞ � n

d2cwo
n ðsÞ

ds2
wOðzÞ, (5a)

2�szðn; s; zÞ ¼
dcU

z ðsÞ

ds
UðzÞ þ

dcbI
z ðsÞ

ds
bI
ðzÞ þ

dcWI
z ðsÞ

ds
WIðzÞ

þ cVI
s ðsÞ

dVIðzÞ

dz
� n

dcwI
n ðsÞ

ds

dwIðzÞ

dz

þ
dcbo

z ðsÞ

ds
bO
ðzÞ þ

dcWo
z ðsÞ

ds
WOðzÞ þcVo

s ðsÞ
dVOðzÞ

dz

þ cy
s ðsÞ

dyðzÞ
dz
þ cwo

s ðsÞ
dwOðzÞ

dz
� n

dcwo
n ðsÞ

ds

dwOðzÞ

dz
, (5b)

�zzðn; s; zÞ ¼ cU
z ðsÞ

dUðzÞ

dz
þcbI

z ðsÞ
dbI
ðzÞ

dz
þcWI

z ðsÞ
dWIðzÞ

dz

þcbo
z ðsÞ

dbO
ðzÞ

dz
þcWo

z ðsÞ
dWOðzÞ

dz
, (5c)

where vanishing c terms and derivatives are omitted. Strain components not listed above are assumed to be zero. It is now
straightforward to calculate stresses ðsss;ssz;szzÞ from the standard constitutive relations:

sss ¼
E

1� n2
ð�ss þ n�zzÞ; szz ¼

E

1� n2
ð�zz þ n�ssÞ; ssz ¼ 2G�zs, (6)

where E, G and n denote Young’s modulus, the shear modulus, and Poisson’s ratio of the beam, respectively.
Hamilton’s principle [14] will be employed for the derivation of the finite element system equation. The Lagrangian

functional of a straight thin-walled box beam ðz1ozoz2Þ is defined as

L ¼ T �P ¼
1

2

Z z2

z1

Z
A
r _~ui

_~ui dA dz�
1

2

Z z2

z1

Z
A
sij�ij dA dz, (7)
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where r is a material density and _ð Þ denotes time derivative. In Eq. (7), T and P are the kinetic energy and the potential
energy of the system, respectively, which can be decomposed as

T ¼ TI þ TO and P ¼ PI þPO, (8)

where TI and VI are energies induced only by in-plane bending deformation while TO and VO, by out-of-plane bending
deformation. Coupling terms between in- and out-of-plane deformations do not appear. This decoupling can be proven by
showing the following orthogonality relations between the shape functions of the in-plane ðcI

Þ and out-of-plane ðcO
Þ

deformations: Z
A
cIcO dA ¼ 0, (9a)

Z
A

dcI

ds
cO dA ¼

Z
A
cI dcO

ds
dA ¼

Z
A

dcI

ds

dcO

ds
dA ¼ 0, (9b)

Z
A

d2cwI

ds2

d2cwO

ds2
dA ¼ 0. (9c)

The dynamic solution for a thin-walled beam system minimizes the Lagrangian functional during specified time interval
t1 and t2 [14]:

d
Z t2

t1

L dt ¼ d
Z t2

t1

1

2

Z z2

z1

Z
A
r _~ui

_~ui dA dz�
1

2

Z z2

z1

Z
A
sij�ij dA dz

" #
dt

¼ d
Z t2

t1

1

2

Z z2

z1

Z
A
ðr _~uI

i
_~u

I
i þ r _~u

O
i
_~u

O
i ÞdA dz�

1

2

Z z2

z1

Z
A
ðsI

ij�
I
ij þ s

O
ij �

O
ij ÞdA dz

" #
dt ¼ 0. (10)

In Eq. (10), the Lagrangian functional is split into in-plane terms and out-of-plane terms by use of Eq. (8). Integration-by-
parts of Eq. (10) leads to

d
Z t2

t1

L dt ¼

Z t2

t1

�

Z z2

z1

Z
A
ðrd ~uI

i
€~u

I
i þ rd ~u

O
i
€~u

O
i ÞdA dz�

Z z2

z1

Z
A
ðd�I

ijs
I
ij þ d�O

ijs
O
ij ÞdA dz

" #
dt ¼ 0. (11)

To discretize Eq. (11), the field variables are interpolated with a linear shape function matrix and a nodal displacement
vector as

UðzÞ ¼ fUIðzÞ;UOðzÞgT ¼ ffU;VI ;bI ;WI;wIg; fVO;bO; y;WO;wOggT ¼ ½NIðzÞ;NOðzÞ�fdI;dO
gT. (12)

Using Eq. (12), three-dimensional displacements in Eqs. (4) can be written as

~up
¼

~up
n

~up
s

~up
z

8><
>:

9>=
>; ¼ Wp

ðn; sÞUpðzÞ ðp ¼ I or OÞ, (13)

where cross-section shape function matrices Wp
ðn; sÞ are

WI
¼

0 cVI
n 0 0 cwI

n

0 cVI
s 0 0 �n

dcwI
n

ds

cU
z 0 cbI

s cWI
z 0

2
666664

3
777775, (14a)

WO
¼

cVo
n cbo

n cy
n 0 cwo

n

cVo
s cbo

s cy
s 0 cwo

s � n
dcwo

n

ds

0 cbo
z 0 cWo

z 0

2
66664

3
77775, (14b)

where cross-section shape functions with zero values are not denoted. Using Eqs. (13) and (14), strains in Eqs. (5) can be
expressed as

ep ¼

�p
ss

2�p
sz

�p
zz

8>><
>>:

9>>=
>>; ¼ LpNpdp

¼ Bpdp
ðp ¼ I or OÞ, (15)
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where the linear operator matrices are given as

LI ¼

0 0 0 0 �n
d2cwI

n

ds2

dcU
z

ds
cVI

s
d

dz

dcbI
z

ds

dcWI
z

ds
�n

dcwI
n

ds

d

dz

cU
z

d

dz
0 cbI

z
d

dz
cWI

z ðsÞ
d

dz
0

2
666666664

3
777777775

, (16a)

LO ¼

0 0 0 0 �n
d2cwo

n

ds2

cVo
s

d

dz

dcbo
z

ds
cy

s
d

dz

dcWo
z

ds
cwo

s
d

dz
� n

dcwo
n

ds

d

dz

0 cbo
z

d

dz
0 cWo

z
d

dz
0

2
666666664

3
777777775

. (16b)

Substituting Eqs. (13)–(16) into Eq. (11) gives

d
Z t2

t1

L dt ¼

Z t2

t1

½�ðddI
ÞTMI €d

I
� ðddO

ÞTMO €d
O
� ðddI

ÞTKIdI
� ðddO

ÞTKOdO
�dt ¼ 0, (17)

where stiffness matrices Kp and mass matrices Mp are

Mp ¼

Z 1

�1

Z
A
ðNpÞTðWp

ÞTrWpNpjJjdA dx ðp ¼ I or OÞ (18)

Kp ¼

Z 1

�1

Z
A
ðBpÞTEBpjJjdA dx ðp ¼ I or OÞ (19)

with

E ¼

E1 0 0

0 G 0

0 0 E1

2
64

3
75. (20)

In the above, E1 ¼ E=ð1� n2Þ and the Jacobian |J| is the half of the element length. In Appendix A, explicit forms of Kp and
Mp are listed.

The final forms of the system equation from Eq. (17) for modal analysis can be written as

Kpd̂
p
¼ o2Mpd̂

p
ðp ¼ I or OÞ, (21)

where d̂
p
¼ dp ejot (o: angular frequency).
3. Joint interface conditions

If two box beams meet at an angled joint in the same plane as depicted in Fig. 1, no coupling between in-plane and out-of-
plane deformations occurs due to the angled joint connection. In this case, the joint interface condition derived for static
problems [12,13] can be used for the present dynamic problems to match field variables of Beam A and Beam B in Fig. 1 at an
angled joint. Fig. 1(b) illustrates a top view of the joint model employed here. Two straight beams are assumed to meet at an
angle of 2f sharing the edge QQ

0
. For the field variables ðU;VI;bI;VO;bO; yÞ having no cross-sectional deformation, the relation

between the variables of Beam A and those of Beam B can be found simply by the standard vector calculus because they are
associated with non-self-equilibrated force resultants. However, it is not possible to use the same procedure for warping and
distortion deformations because the corresponding force resultants are self-equilibrated. Therefore, one may simply assume that

Wp
A ¼Wp

B and wp
A ¼ wp

B ðp ¼ I or OÞ. (22)

If Eq. (22) is used, the deformations due to W and w are completely decoupled from cross-sectional deformations resulting from
other field variables such as U, VI, etc.; flexibility due to the existence of an angled joint cannot be accounted for and the resulting
solution will behave almost similarly to that by the Timoshenko beam theory.

A remedy to fix the above-mentioned defect is to minimize the difference between three-dimensional displacements
due to the field variables of Beam A and those of Beam B on an imaginary Joint Section J in Fig. 1(b). According to Jang et al.
[12] and Jang and Kim [13], the following minimization problem is set up:

Find Tp
AB 2 R

5�5 for Up
A ¼ Tp

ABUp
B ðp ¼ I or OÞ (23a)
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Fig. 5. Joint coordinates ðnJ ; sJ ; zJ Þ on Edge 2 of Joint Section J (edge index numbers are skipped).

Fig. 6. Displacement/deformation patterns on Joint Section J due to deformations on Section A: (a) in-plane bending warping, (b) in-plane bending

distortion, (c) out-of-plane torsional warping, and (d) out-of-plane torsional distortion.

G.-W. Jang, Y.Y. Kim / Journal of Sound and Vibration 326 (2009) 647–670 655
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minimizing P
_
ðUp

A;U
p
BÞ for any admissible Up

A ðor Up
BÞ, (23b)

where

P
_p
ðUp

A
;Up

BÞ ¼

Z
nJ

Z
sJ

jj ~up
AJ
ðsJ ;nJÞ � ~up

BJ
ðsJ ;nJÞjj

2 dsJ dnJ , (23c)

and

UI
q ¼ fUq;V

I
q;b

I
q;W

I
q;w

I
qg

T ðq ¼ A or BÞ, (23d)

UO
q ¼ fV

O
q ;b

O
q ; yq;W

O
q ;w

O
q g

T ðq ¼ A or BÞ. (23e)

In Eq. (23c), ~up
AJ

and ~up
BJ

(p ¼ I or O) denote three-dimensional displacements on Joint Section J due to deformations

by Up
A at Section A and deformations Up

B at Section B, respectively. To express ~up
AJ

and ~up
BJ

, new coordinates nJ and sJ are

defined on Joint Section J (see Fig. 5). By minimizing the difference between three-dimensional displacements on Joint
Section J in Eq. (23c), the transformation relations Tp

AB for in- and out-of-plane field variables can be found. Note that two
sets of decoupled minimization problems are solved for TI

AB and TO
AB.

In making use of Eqs. (23), the most important issue is how to evaluate ~up
AJ

and ~up
BJ

on Joint Section J from Up
A and Up

B, the

deformations defined on different sections, Sections A and B. Therefore, physics-based kinematic assumptions used to
relate Up

A
(or Up

B) and the deformations on Joint Section J must be found. For the field variables ðU;VI;bI
Þ and ðVO;bO;yÞ

associated with sectional rigid-body motions, the transfer relations between field variables on Section A and those on Joint
Section J are easy to find. By using the vector calculus of rigid-body motions, one can write

U

VI

bI

8><
>:

9>=
>;

AJ

¼

cos f � sin f 0

sin f cos f 0

0 0 1

2
64

3
75

U

VI

bI

8><
>:

9>=
>;

A

, (24a)
Table 1

Calculated eigenfrequencies of the box beam in Fig. 1 for 2f ¼ 301 (unit: Hz).

Mode Dominant mode Shell (ANSYS) Proposed beams Timoshenko beams

1 First in-plane flexure mode 82.72 81.17 (�1.9%) 98.26

2 First out-of-plane rotation mode 209.59 203.25 (�3.0%) 311.95

3 Second in-plane flexure mode 258.74 278.28 (7.6%) 279.76

4 Second out-of-plane rotation mode 410.80 420.72 (2.4%) 637.19

5 Third in-plane flexure mode 417.29 437.99 (5.0%) 496.08

6 Coupled out-of-plane flexure and rotation mode 440.11 461.77 (4.9%) 459.30

7 Coupled out-of-plane distortion and warping mode 500.91 507.48 (1.3%) –

8 Coupled out-of-plane distortion and warping mode 503.78 507.50 (0.7%) –

9 Coupled out-of-plane distortion and warping mode 553.55 555.99 (0.4%) –

10 Coupled out-of-plane distortion and warping mode 615.34 635.26 (3.2%) –

Table 2

Calculated eigenfrequencies of the box beam in Fig. 1 for 2f ¼ 601 (unit: Hz).

Mode Dominant mode Shell (ANSYS) Proposed beams Timoshenko beams

1 First in-plane flexure mode 71.85 70.54 (�1.8%) 87.82

2 First out-of-plane rotation mode 228.43 212.93 (�6.8%) 451.46

3 Second in-plane flexure mode 262.82 282.79 (7.6%) 284.29

4 Third in-plane flexure mode 367.00 384.20 (4.7%) 443.70

5 Coupled out-of-plane flexure and rotation mode 408.77 414.66 (1.4%) 454.30

6 Coupled out-of-plane flexure and rotation mode 445.96 464.97 (4.3%) –

7 Second out-of-plane rotation mode 503.57 507.90 (0.9%) 636.50

8 Coupled out-of-plane distortion and warping mode 511.09 516.25 (1.0%) –

9 Coupled out-of-plane distortion and warping mode 554.92 559.37 (0.8%) –

10 Coupled out-of-plane distortion and warping mode 624.23 651.49 (4.4%) –
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VO

bO

y

8><
>:

9>=
>;

AJ

¼

1 0 0

0 cos f � sin f
0 sin f cos f

2
64

3
75 VO

bO

y

8><
>:

9>=
>;

A

. (24b)

The positive directions of ð ÞAJ
are based on the joint coordinate systems ðnJ ; sJ ; zJÞ. For example, in Fig. 5, if UAJ

40, the Joint

Section J moves in the +zJ direction, and if VI
AJ
40, the Joint Section J moves in the +sJ direction.
Fig. 7. Eigenmode shapes of the thin-walled box beam in Fig. 1 (2f ¼ 601) by the developed higher-order beam analysis: (a) first in-plane flexure, (b) first

out-of-plane torsional rotation, (c) second in-plane flexure, (d) third in-plane flexure, and (e) second out-of-plane torsional rotation.

Table 3

Calculated eigenfrequencies of the box beam in Fig. 1 for 2f ¼ 901 (unit: Hz).

Mode Dominant mode Shell (ANSYS) Proposed beams Timoshenko beams

1 First in-plane flexure mode 62.68 61.47 (�1.9%) 77.65

2 First out-of-plane rotation mode 234.96 217.03 (�7.6%) 442.18

3 Second in-plane flexure mode 271.83 292.88 (7.7%) 294.41

4 Third in-plane flexure mode 342.26 354.93 (3.7%) 410.42

5 Coupled out-of-plane flexure and rotation mode 394.31 402.15 (2.0%) –

6 Coupled out-of-plane flexure and rotation mode 453.98 470.41 (3.6%) –

7 Second out-of-plane rotation mode 503.09 508.98 (1.2%) 531.51

8 Coupled out-of-plane distortion and warping mode 513.97 518.30 (0.8%) –

9 Coupled out-of-plane distortion and warping mode 555.14 560.10 (0.9%) –

10 Coupled out-of-plane distortion and warping mode 625.96 656.09 (4.8%) –
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In finding the relation between ðWp
AJ
;wp

AJ
Þ and Up

A (p ¼ I or O), we note that no additional elastic strain energy should be

stored in the region between Section A and Joint Section J if the transfer relation is correct. To satisfy this condition, the
displacements of all points lying on the edges of Joint Section J are exactly the same as those of their corresponding
points on Section A. This also means that all points lying on the same zA-axis between Section A and Joint Section J should
have the same displacements. Fig. 6 illustrates the deformation patterns of Joint Section J by warping and distortion of
Section A based on this kinematic assumption. The comparison of the sectional deformations of Section A in Fig. 2(d, e) and
Fig. 3(d, e) and those in Fig. 6 will clearly demonstrate how the displacements on Joint Section J occur due to ðWp

A;w
p
AÞ.

The transfer relation between Section A and Joint Section J equally applies in establishing the transfer relation between
Section B and Joint Section J. One can then immediately see the mismatch in the displacements on Joint Section J whenever
the joint angle 2f is not zero. To minimize the displacement mismatch on Joint Section J, other field variables such as U, VI,
bI, VO, bO and y should interact with Wp and wp (p ¼ I or O), which results in the coupling among all field variables.

Employing the above kinematic relations, the three-dimensional displacement ~up
AJ

(p ¼ I or O) on Edge 1 of Joint
Section J can be written in terms of UI

A and UO
A as
�

Fig
ro
for in-plane deformation

1 ~uI
AJ ;nJ
ðnJ ; sJÞ ¼ �UA sin f� VI

A cos fþ cwI
n wI

A cos f� cWI
z WI

A sin f, (25a)
. 8. Eigenmode shapes of the thin-walled beam in Fig. 1 (2f ¼ 601) by the ANSYS shell analysis: (a) first in-plane flexure, (b) first out-of-plane torsional

tation, (c) second in-plane flexure, (d) third in-plane flexure, and (e) second out-of-plane torsional rotation.
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1 ~uI
AJ ;sJ
ðnJ ; sJÞ ¼ �nJ

dcwI
n

ds
wI

A, (25b)

1 ~uI
AJ ;zJ
ðnJ ; sJÞ ¼ UA cos f� VI

A sin f�
b

2
bI

A þcwI
n wI

A sin fþ cWI
z WI

A cos f, (25c)

and

�
 for out-of-plane deformation

1 ~uO
AJ ;nJ
ðnJ ; sJÞ ¼ �sJb

O
A sin f� sJyA cos f�

b

2
sJW

O
A sin fþ cwo

n wO
A cos f, (26a)

1 ~uO
AJ ;sJ
ðnJ ; sJÞ ¼ VO

A þ
b

2
bO

A sin fþ
b

2
yA cos fþ

bh

bþ h
wO

A � nJ
dcwo

n

ds
wO

A , (26b)
. 9. Distributions of one-dimensional field variables for the second modes in Figs. 6(b) and 7(b) (the angled joint is located at z ¼ 1): (a) VO (out-of-

ne bending deflection), (b) y (torsional rotation), (c) WO (torsional warping), and (d) wO (torsional distortion).

α

R

Center line

b

ht

Fig. 10. A curved thin-walled beam (R ¼ 1000 mm, a ¼ 901, b ¼ 50 mm, h ¼ 70 mm, t ¼ 1 mm, E ¼ 200 GPa, and n ¼ 0.3).
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Table 4
Calculated eigenfrequencies of the curved beam in Fig. 10 (unit: Hz).

Mode Dominant mode Shell (ANSYS) Proposed beams Timoshenko beams

1 First in-plane flexure mode 111.43 117.47 (5.4%) 148.46

2 First out-of-plane rotation mode 239.31 239.00 (�0.1%) 442.41

3 Second out-of-plane rotation mode 261.21 259.52 (�0.6%) 542.46

4 Second in-plane flexure mode 298.55 317.16 (6.2%) 412.87

5 Coupled out-of-plane distortion and warping mode 372.70 369.78 (�0.8%) –

6 Third out-of-plane rotation mode 416.32 415.86 (�0.1%) –

7 Third in-plane flexure mode 508.03 533.19 (5.0%) 796.63

8 Coupled out-of-plane distortion and warping mode 570.39 585.86 (2.7%) –

9 Fourth in-plane flexure mode 647.44 640.37 (�1.1%) –

10 Fifth in-plane flexure mode 700.45 674.28 (�3.7%) –

G.-W. Jang, Y.Y. Kim / Journal of Sound and Vibration 326 (2009) 647–670660
1 ~uO
AJ ;zJ
ðnJ ; sJÞ ¼ sJb

O
A cos f� sJyA sin fþ

b

2
sJW

O
A cos fþ cwo

n wO
A sin f. (26c)

Because Joint Section J can be regarded as a rotated section of Section A or Section B, its size is assumed to be b� h [13]. For

instance, 1 ~uI
AJ ;zJ

in the direction of zJ by bI
A becomes �b=2bI

A as given in Eq. (25c). As seen in Eqs. (25a) and (25c),

the axial displacement by warping of Section A induces normal displacement as well as axial displacement on Joint

Section J. Likewise, the normal displacement cwI
n wI

A of distortion of Section A induces axial and normal displacements on

Joint Section J.

The three-dimensional displacements ~up
AJ

(p ¼ I or O) on the other edges are listed in Appendix A. Three-dimensional

displacements ~up
BJ

on Section B can be obtained by putting �f instead of f in Eqs. (25) and (26) and those in Appendix A.
For example,

1 ~uI
BJ ;nJ
ðnJ ; sJÞ ¼ UB sin f� VI

B cos fþcwI
n wI

B cos fþ cWI
z WI

B sin f. (27)

Since the three-dimensional displacements on Joint Section J are expressed in terms of UI
A, UO

A , UI
B and UO

B , the functional

P
_p

(p ¼ I or O) representing the difference between displacements of Beam A and Beam B on Joint Section J can be also

written in terms of these field variables. Considering the minimization of P
_p

with respect to arbitrary configuration of Up
A,

qP
_ I

qzI
A

¼ 0 ðzI
A ¼ UA;V

I
A;b

I
A;W

I
A and wI

AÞ, (28a)

and

qP
_O

qzO
A

¼ 0 ðzo
A ¼ VO

A ;b
O
A ; y;W

O
A and wO

A Þ. (28b)

Because P
_p

in Eq. (23c) is quadratic with respect to the field variables, Eqs. (28) yield linear relations between the field
variables, which can be symbolically written as

Tp
AUp

A þ Tp
BUp

B ¼ 0 ðp ¼ I or OÞ, (29)

where the components of the coefficient matrices Tp
A

and Tp
B consist of nonlinear combinations of section geometric

parameters and the joint angle. The matrices Tp
AB in Eq. (23a) are given by

Tp
AB ¼ �ðT

p
AÞ
�1Tp

B ðp ¼ I or OÞ. (30)

In this work, the symbolic expression function of Matlab [15] is used to derive Tp
AB.
4. Numerical examples

4.1. A one-angled-joint thin-walled box beam structure

A thin-walled box beam structure having an angled joint of Fig. 1(a) is analyzed. The geometries and material properties
of Beam A and Beam B are length ¼ 1000 mm, b ¼ 50 mm, h ¼ 100 mm, t ¼ 2 mm, E (Young’s modulus) ¼ 200 GPa and n
(Poisson’s ratio) ¼ 0.3. To check solution accuracy, the results by the developed higher-order beam analysis are compared
with those by the shell finite elements of commercial software, ANSYS [16]. The results by the Timoshenko beam theory are
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also presented to see the effect of warping and distortion deformations on the flexibility of the structure. For the analysis,
100 beam elements are used both for the higher-order and Timoshenko beam analyses. Tables 1–3 list the eigenfrequencies
obtained by using the higher-order beam elements, the Timoshenko beam elements, and shell elements for joint angles 2f
equal to 301, 601, and 901. The mode shapes by the present higher-order beam analysis and those by the shell analysis are
compared in Figs. 7 and 8.

From Table 1, one can see that the fundamental eigenfrequency corresponding to a dominant in-plane flexure mode by
the proposed higher-order beam approach is almost identical to the result by shell elements. In the table, the numbers in
Fig. 11. Eigenmode shapes of the curved thin-walled beam in Fig. 9 by the proposed higher-order beam analysis: (a) first in-plane flexure, (b) first out-of-

plane torsional rotation, (c) second out-of-plane torsional rotation, (d) second in-plane flexure, and (e) third out-of-plane torsional rotation.
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parentheses denote the relative differences of the present results to those by the shell analysis. On the other hand, the
Timoshenko beam analysis predicts considerably stiff behavior because the effects of cross-sectional deformations are
neglected. Furthermore, the eigenmode sequence from the lowest energy mode to higher modes is incorrectly estimated by
the Timoshenko theory. For instance, the Timoshenko beam analysis incorrectly predicts that the first out-of-plane rotation
mode is a higher energy mode than the second in-plane flexure mode. This is due to the fact that the Timoshenko beam
analysis is incapable of predicting the eigenmodes mainly consisting of cross-sectional deformations (see, e.g., from the
seventh to the tenth modes in Table 1).

Let us examine the detailed mode shapes obtained by the present higher-order beam analysis and the
ANSYS shell analysis. Fig. 7 shows the mode shapes by the present analysis for the case of 2f ¼ 601, which
are virtually identical to those by the shell analysis in Fig. 8. The first out-of-plane torsional rotation mode
shown in Figs. 7(b) and 8(b) exhibits symmetric rotation with respect to the angled joint along two connected beams
while the second out-of-plane torsional rotation mode in Figs. 7(e) and 8(e) exhibits anti-symmetric rotation. The
distribution of the one-dimensional field variables such as VO, y, WO and wO are plotted as the functions of the axial
coordinate in Fig. 9. It shows that the solutions by the higher-order beam analysis agree well with those by the shell
analysis.

4.2. A curved thin-walled beam

The vibration analysis of a curved thin-walled beam in Fig. 10 is carried out. The beam is modeled by straight thin-
walled box beam elements connected at angled joints. For the finite element discretization, 100 higher-order straight beam
elements are employed, each of which is connected to adjacent elements at the same angle of 2f ¼ 0.91. Earlier, this
problem is solved by using curved higher-order beam elements [17,18].

Table 4 lists the eigenfrequencies by the higher-order beam, Timoshenko beam and shell theories. It is
apparent from Table 4 that the difference between the higher-order beam results and the shell results is marginal. As
was expected, not only the values of the eigenfrequencies but also the mode sequence is incorrectly predicted if the
Timoshenko beam theory neglecting warping and distortion is used. Significant effects of cross-sectional deformations can
be seen in Fig. 11.
Table 5
Calculated eigenfrequencies of the closed-loop frame structure in Fig. 11 (unit: Hz).

Mode Dominant mode Shell (ANSYS) Proposed beams Timoshenko beams

1 First out-of-plane flexure and rotation mode 97.18 91.98 (�5.3%) 172.89

2 First in-plane flexure mode 182.12 183.24 (0.6%) 213.89

3 Second out-of-plane flexure and rotation mode 319.56 336.23 (5.2%) 342.96

4 Second in-plane flexure mode 330.11 346.13 (4.9%) 349.92

5 Third out-of-plane flexure and rotation mode 510.60 544.92 (6.7%) 585.38

6 Third in-plane flexure mode 538.71 559.16 (3.8%) 597.96

7 Fourth out-of-plane flexure and rotation mode 588.34 584.32 (�0.7%) 669.10

8 Fifth out-of-plane flexure and rotation mode 592.20 611.52 (3.3%) 823.69

9 Fourth in-plane flexure mode 649.60 663.00 (2.1%) 719.49

10 Fifth in-plane flexure mode 747.47 718.96 (�3.8%) 842.03
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Fig. 12. A closed-loop thin-walled box beam structure (b ¼ 50 mm, h ¼ 50 mm, t ¼ 2 mm, E ¼ 200 GPa, and n ¼ 0.3).
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Fig. 13. Eigenmode shapes of the thin-walled structure in Fig. 11 by the proposed higher-order beam analysis: (a) first out-of-plane flexure and torsional

rotation, (b) first in-plane flexure, (c) second out-of-plane flexure and torsional rotation, and (d) second in-plane flexure.

Fig. 14. Distributions of one-dimensional field variables for the first mode in Fig. 12(a): (a) VO (out-of-plane bending deflection), (b) y (torsional rotation),

(c) WO (torsional warping), and (d) wO (torsional distortion). The axial coordinate is measured counterclockwise starting from the top right corner of the

structure.

G.-W. Jang, Y.Y. Kim / Journal of Sound and Vibration 326 (2009) 647–670 663
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4.3. A closed-loop thin-walled box beam structure

Fig. 12 illustrates a closed-loop thin-walled structure consisting of four straight thin-walled box beams. This
layout is efficient in supporting out-of-plane directional loads, and thus popularly used in many frame structures
such as the sub-frame of a car. Note that the proposed joint match condition is applicable for joints with acute angles.
Table 5 lists the eigenfrequencies of the structure. Unlike the previous open-loop beam structures, as can be seen in Fig. 13,
eigenmodes involving significant cross-sectional deformations are difficult to appear because there is no open end.
Therefore, most of the fundamental modes can be predicted by the Timoshenko theory. Nevertheless, there are still
serious defects in the prediction by the Timoshenko theory. Most of all, the first eigenfrequency by the Timoshenko theory
is too high; it is almost twice as high as that calculated by the shell or the higher-order beam analysis. This inaccuracy
results from ignorance of cross-sectional deformations due to warping and distortion. As shown in Fig. 14, torsional
warping and distortional deformations cannot be ignored even in the lowest eigenmode. When higher eigenfrequencies
are calculated, the Timoshenko beam theory performs better, but there is a situation where the mode sequence is
incorrectly estimated.
5. Conclusions

The vibration analysis of a thin-walled beam structure having angled joints was carried out by using a higher-order
beam theory. The main contributions of this work are (1) that the beam-based vibration analysis of boxed beams joined at
an angle is accomplished without using artificial joint elements while existing beam-based approaches should employ
special additional joint elements and (2) that the solutions obtained by the developed analysis technique compare
favorably with the solutions by the detailed shell analysis.

Unlike the Timoshenko-kinematics-based beam approach, the present higher-order beam approach calculated the
eigenfrequencies of thin-walled box beam systems only in marginal errors and also predicted the modal order
correctly. Even in thin-walled box beam systems without any open end, the cross-sectional warping and distortional
deformations affected the lowest eigenfrequencies significantly. The effects of the sectional deformations were accurately
modeled in the developed approach. The developed beam analysis required the use of more dof in the higher-order beam
theory than those of the Timoshenko theory and needed an additional joint matching technique, but the complexity was
compensated by solution accuracy. Because the beam-based analysis of complex structures such as a body-in-white
of an automobile plays a critical role in shortening initial design period, the sophistication of the present technique to
handle beams of arbitrarily-shaped cross-sections can be an effective analysis tool for initial body design in automotive
industry.
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Appendix A

The cross-section shape functions in Eqs. (2) and (3) describing cross-section deformations are given as follows. In the
equations below, the subscript i ði ¼ 1;2;3;4Þ denotes the edge number of a cross-section and si starts from the center of
the ith edge. Shape functions not listed below vanish.

Shape functions for in-plane deformations:

cU
zi
¼ 1 ði ¼ 1;2;3;4Þ, (A.1)

cVI
n1
¼ �1; cVI

n3
¼ 1; cVI

s2
¼ 1; cVI

s4
¼ �1, (A.2)

cbI
z1
¼ �

b

2
; cbI

z2
¼ s; cbI

z3
¼

b

2
; cbI

z4
¼ �s, (A.3)

cWI
z1
ðs1Þ ¼ �h, (A.4)
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cWI
z2
ðs2Þ ¼

hðbþ 3hÞ

2b
þ

3hðbþ hÞ

b2
s2, (A.5)

cWI
z3
ðs3Þ ¼

3b2
þ 8bhþ 3h2

2b
�

6ðbþ 3hÞðbþ hÞ

bh2
s2

3, (A.6)

cWI
z4
ðs4Þ ¼

hðbþ 3hÞ

2b
�

3hðbþ hÞ

b2
s4, (A.7)

cwI
n1
ðs1Þ ¼

�
h

3
þ

2

h
s2

1 þ
4

3h2
s3

1; �
h

2
� s1 � 0

� �

�
h

3
þ

2

h
s2

1 �
4

3h2
s3

1; 0 � s1 �
h

2

� � ;

8>>><
>>>:

(A.8)

cwI
n2
ðs2Þ ¼

b

3
�

2

b
s2

2 �
4

3b2
s3

2; �
b

2
� s2 � 0

� �
b

3
�

2

b
s2

2 þ
4

3b2
s3

2; 0 � s2 �
b

2

� �
8>>><
>>>:

, (A.9)

cwI
n3
ðs3Þ ¼ cwI

n1
ðs1Þ; cwI

n4
ðs4Þ ¼ cwI

n2
ðs2Þ, (A.10)

Shape functions for out-of-plane deformations:

cVo
n ðs1Þ ¼ 0; cVo

n ðs2Þ ¼ 1; cVo
n ðs3Þ ¼ 0; cVo

n ðs4Þ ¼ �1, (A.11)

cVo
s ðs1Þ ¼ 1; cVo

s ðs2Þ ¼ 0; cVo
s ðs3Þ ¼ �1; cVo

s ðs4Þ ¼ �1, (A.12)

cbo
z ðs1Þ ¼ s1; cbo

z ðs2Þ ¼
h

2
; cbo

z ðs3Þ ¼ �s3; cbo
z ðs4Þ ¼ �

h

2
, (A.13)

cy
nðsiÞ ¼ �si; ði ¼ 1;2;3;4Þ, (A.14)

cy
s ðsiÞ ¼ d ðd : normal distance from the shear center of the cross-sectionÞ, (A.15)

cWo
z ðs1Þ ¼

b

2
s1; cWo

z ðs2Þ ¼ �
h

2
s2; cWo

z ðs3Þ ¼
b

2
s3; cWo

z ðs4Þ ¼ �
h

2
s4, (A.16)

cwo
n ðs1Þ ¼

4

hðbþ hÞ
s3

1 �
2bþ h

bþ h
s1; cwo

n ðs2Þ ¼ �
4

bðbþ hÞ
s3

2 þ
bþ 2h

bþ h
s2, (A.17)

cwo
n ðs3Þ ¼ cwo

n ðs1Þ; cwo
n ðs4Þ ¼ cwo

n ðs2Þ, (A.18)



ARTICLE IN PRESS

G.-W. Jang, Y.Y. Kim / Journal of Sound and Vibration 326 (2009) 647–670666
cwo
s ðs1Þ ¼

bh

bþ h
; cwo

s ðs2Þ ¼ �
bh

bþ h
, (A.19)

cwo
s ðs3Þ ¼

bh

bþ h
; cwo

s ðs4Þ ¼ �
bh

bþ h
. (A.20)

The element mass matrix for in-plane deformations (l denotes the length of an element, and r’s
result from the integration of the products of the cross-section shape functions. The explicit forms of r’s will be
listed next):

MI ¼ r

rI
7l

3

rI
10l

3

rI
11l

3

rI
7l

6

rI
10l

6

rI
11l

6

ðrI
1 þ rI

4Þl

3

ðrI
3 þ rI

6Þl

3

ðrI
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4Þl

6
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6
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3
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12l
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6
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6
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6
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3

rI
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9l

3

ðrI
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. (A.21)

The element mass matrix for out-of-plane deformations:

MO ¼ r

ðro
1 þ ro

7Þl

3

ðro
4 þ ro

11Þl

3

ðro
5 þ ro

12Þl

3

ðro
1 þ ro

7Þl

6

ðro
4 þ ro

11Þl

6

ðro
5 þ ro

12Þl

6
ro

14l

3

ro
16l

3

ro
14l

6

ro
16l

6
ðro

2 þ ro
8Þl

3

ðro
6 þ ro

13Þl

3

ðro
4 þ ro

11Þl

6

ðro
2 þ ro

8Þl

6

ðro
6 þ ro

13Þl

6
ro

15l

3

ro
16l

6

ro
15l

6
ðro

3 þ ro
9 þ ro

10Þl

3

ðro
5 þ ro

12Þl

6

ðro
6 þ ro

13Þl

6

ðro
3 þ ro

9 þ ro
10Þl

6
ðro

1 þ ro
7Þl

3

ðro
4 þ ro

11Þl

3

ðro
5 þ ro

12Þl

3
ro

14l

3

ro
16l

3

sym
ðro

2 þ ro
8Þl

3

ðro
6 þ ro

13Þl

3
ro

15l

3
ðro

3 þ ro
9 þ ro

10Þl

3

2
6666666666666666666666666666666666666664

3
7777777777777777777777777777777777777775

. (A.22)
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The element stiffness matrix for in-plane deformations (s’s result from the integration of the products of the cross-section
shape functions. The explicit forms of s’s will be listed next.):

KI ¼

E1
sI

1

l
E1

sI
4

l
E1

sI
6

l
�E1

sI
1

l
�E1

sI
4

l
�E1

sI
6

l

G
sI

10

l
�G

sI
12

2
�G

sI
14

2
�G

sI
10

l
�G

sI
12

2
�G

sI
14

2

G
sI

8l

3
þ E1

sI
2

l
G

sI
13l

3
þ E1

sI
5

l
�E1

sI
4

l
G

sI
12

2
G

sI
8l

6
� E1

sI
2

l
G

sI
13l

6
� E1

sI
5

l

G
sI

9l

3
þ E1

sI
3

l
�E1

sI
6

l
G

sI
14

2
G

sI
13l

6
� E1

sI
5

l
G

sI
9l

6
� E1

sI
3

l

E1
sI

7l

3
þ G

sI
11

l
E1

sI
7l

6
� G

sI
11

l

E1
sI

1

l
E1

sI
4

l
E1

sI
6

l

G
sI

10

l
G

sI
12

2
G

sI
14

2

sym G
sI

8l

3
þ E1

sI
2

l
G

sI
13l

3
þ E1

sI
5

l

G
sI

9l

3
þ E1

sI
3

l

E1
sI

7l

3
þ G

sI
11

l

2
666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777775

.

(A.23)

The element stiffness matrix for out-of-plane deformations:

KO ¼

G
so

4

l
�G

so
9

2
�G

so
4

l
�G

so
9

2

G
so

5l

3
þ E1

so
1

l
G

so
9

2
G

so
5l

6
� E1

so
1

l

G
so

7

l
�G

so
10

2
G

so
12

l
�G

so
7

l
�G

so
10

2
�G

so
12

l

G
so

6l

3
þ E1

so
2

l
�G

so
11

2
G

so
10

2
G

so
6l

6
� E1

so
2

l
G

so
11

2

E1
so

3l

3
þ G

so
8

l
�G

so
12

l
�G

so
11

2
E1

so
3l

6
� G

so
8

l

G
so

4

l
G

so
9

2

G
so

5l

3
þ E1

so
1

l

sym G
so

7

l
G

so
10

2
G

so
12

l

G
so

6l

3
þ E1

so
2

l
G

so
11

2

E1
so

3l

3
þ G

so
8

l

2
6666666666666666666666666666666666666664

3
7777777777777777777777777777777777777775

.

(A.24)

rI
1 ¼

Z
ðcVI

n Þ
2 dA ¼ 2ht; rI

2 ¼

Z
ðcwI

n Þ
2 dA ¼

34tðh3
þ b3
Þ

315
; rI

3 ¼

Z
cwI

n cVI
n dA ¼ 0, (A.25)

rI
4 ¼

Z
ðcVI

s Þ
2 dA ¼ 2bt; rI

5 ¼

Z
n

dcwI
n

ds

 !2

dA ¼
4t3ðhþ bÞ

45
; rI

6 ¼ �

Z
n

dcwI
n

ds
cVI

s dA ¼ 0, (A.26)
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rI
7 ¼

Z
ðcU

z Þ
2 dA ¼ 2tðhþ bÞ; rI

8 ¼

Z
ðcbI

z Þ
2 dA ¼ t

hb2

2
þ

b3

6

 !
, (A.27)

rI
9 ¼

Z
ðcWI

z Þ
2 dA ¼

htð9h4
þ 54h3bþ 77h2b2

þ 38hb3
þ 6b4

Þ

5b2
, (A.28)

rI
10 ¼

Z
cU

z c
bI
z dA ¼ 0; rI

11 ¼

Z
cU

z c
WI
z dA ¼ 0; rI

12 ¼

Z
cbI

z cWI
z dA ¼ 0, (A.29)

ro
1 ¼

Z
ðcVo

n Þ
2 dA ¼ 2bt; ro

2 ¼

Z
ðcy

nÞ
2 dA ¼

tðh3
þ b3
Þ

6
, (A.30)

ro
3 ¼

Z
ðcwo

n Þ
2 dA ¼

2tð2h4
þ 12h3bþ 23h2b2

þ 12hb3
þ 2b4

Þ

105ðhþ bÞ
, (A.31)

ro
4 ¼

Z
cVo

n cy
n dA ¼ 0; ro

5 ¼

Z
cVo

n cwo
n dA ¼ 0; ro

6 ¼

Z
cy

nc
wo
n dA ¼

tðh3
þ 4h2b� 4hb2

� b3
Þ

15
, (A.32)

ro
7 ¼

Z
ðcVo

s Þ
2 dA ¼ 2ht; ro

8 ¼

Z
ðcy

s Þ
2 dA ¼

hbtðhþ bÞ

2
; ro

9 ¼

Z
ðcwo

s Þ
2 dA ¼

2h2b2t

hþ b
, (A.33)

ro
10 ¼

Z
n

dcwo
n

ds

 !2

dA ¼
2t3ðh2

þ 4hbþ b2
Þ

15ðhþ bÞ
; ro

11 ¼

Z
cVo

s cy
s dA ¼ 0; ro

12 ¼

Z
cVo

s cwo
s dA ¼ 0, (A.34)

ro
13 ¼

Z
cy

sc
wo
s dA ¼ 0; ro

14 ¼

Z
ðcb

z Þ
2 dA ¼ t

h3

6
þ

h2b

2

 !
; ro

15 ¼

Z
ðcWo

z Þ
2 dA ¼

h2b2tðhþ bÞ

24
, (A.35)

ro
16 ¼

Z
cbo

z cWo
z dA ¼ 0, (A.36)

sI
1 ¼

Z
A
ðcU

z Þ
2 dA ¼ 2tðbþ hÞ; sI

2 ¼

Z
A
ðcbI

z Þ
2 dA ¼ t

b2h

2
þ

b3

6

 !
, (A.37)

sI
3 ¼

Z
A
ðcWI

z Þ
2 dA ¼

htð6b4
þ 38b3hþ 77b2h2

þ 54bh3
þ 9h4

Þ

5b2
; sI

4 ¼

Z
A
cU

z c
bI
z dA ¼ 0, (A.38)

sI
5 ¼

Z
A
cbI

z cWI
z dA ¼ 0; sI

6 ¼

Z
A
cWI

z cU
z dA ¼ 0; sI

7 ¼

Z
A

n
d2cwI

n

ds2

 !2

dA ¼
t3ð8bþ 8hÞ

9
, (A.39)
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sI
8 ¼

Z
A

dcbI
z

ds

 !2

dA ¼ 2bt; sI
9 ¼

Z
A

dcWI
z

ds

 !2

dA ¼
6tðbþ hÞ2ð2b3

þ 12b2hþ 18bh2
þ 3h3

Þ

b3h
, (A.40)

sI
10 ¼

Z
A
ðcVI

s Þ
2 dA ¼ 2bt; sI

11 ¼

Z
A

n
dcwI

n

ds

 !2

dA ¼
28t3ðbþ hÞ

315
; sI

12 ¼

Z
A

dcbI
z

ds
cVI

s dA ¼ 2bt, (A.41)

sI
13 ¼

Z
A

dcbI
z

ds

dcWI
z

ds
dA ¼

6htðbþ hÞ

b
; sI

14 ¼

Z
A
cVI

s
dcWI

z

ds
dA ¼

6htðbþ hÞ

b
, (A.42)

so
1 ¼

Z
A
ðcbo

z Þ
2 dA ¼

h2tðhþ 3bÞ

6
; so

2 ¼

Z
A
ðcWo

z Þ
2 dA ¼

b2h2tðbþ hÞ

24
, (A.43)

so
3 ¼

Z
A

n2 d2cwo
n

ds2

 !2

dA ¼
8t3

bþ h
; so

4 ¼

Z
A
ðcVo

s Þ
2 dA ¼ 2ht; so

5 ¼

Z
A

dcbo
z

ds

 !2

dA ¼ 2ht, (A.44)

so
6 ¼

Z
A

dcWo
z

ds

 !2

dA ¼
hbtðhþ bÞ

2
; so

7 ¼

Z
A
ðcy

s Þ
2 dA ¼

hbtðhþ bÞ

2
, (A.45)

so
8 ¼

Z
A
ðcwo

s Þ
2 þ n

dcwo
n

ds

 !2
2
4

3
5dA ¼

2b2h2t

bþ h
þ

2t3ðb2
þ 4bhþ h2

Þ

15ðbþ hÞ
; so

9 ¼

Z
A

dcbo
z

ds
cV

s dA ¼ 2ht, (A.46)

so
10 ¼

Z
A

dcWo
z

ds
cy

s dA ¼
hbtðb� hÞ

2
; so

11 ¼

Z
A

dcWo
z

ds
cwo

s dA ¼
�2b2h2t

bþ h
; so

12 ¼

Z
A
cy

sc
wo
s dA ¼ 0. (A.47)

The three-dimensional displacements on Joint Section J:
On Edge 2

2 ~uI
AJ ;nJ
ðnJ ; sJÞ ¼ cwI

n wI
A, (A.48)

2 ~uI
AJ ;sJ
ðnJ ; sJÞ ¼ UA sin fþ VI

A cos f� nJ
dcwI

n

ds
wI

A cos fþcWI
z WI

A sin f, (A.49)

2 ~uI
AJ ;zJ
ðnJ ; sJÞ ¼ UA cos f� VI

A sin fþ sJb
I
A þ nJ

dcwI
n

ds
wI

A sin fþ cWI
z WI

A cos f, (A.50)

2 ~uo
AJ ;nJ
ðnJ ; sJÞ ¼ Vo

A � sJyA cos f� sJb
o
A sin fþ cwo

n wo
A, (A.51)

2 ~uo
AJ ;sJ
ðnJ ; sJÞ ¼

h

2
yA cos fþ

h

2
bo

A sin f�
h

2
sJW

o
A sin f�

bh

bþ h
wo

A cos f� nJ
dcwo

n

ds
wo

A, (A.52)

2 ~uo
AJ ;zJ
ðnJ ; sJÞ ¼

h

2
bo

A cos f�
h

2
yA sin f�

h

2
sJW

o
A cos fþ

bh

bþ h
wo

A sin f. (A.53)

On Edge 3

3 ~uI
AJ ;nJ
ðnJ ; sJÞ ¼ UA sin fþ VI

A cos fþ cwI
n wI

A cos fþ cWI
z WI

A sin f, (A.54)
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3 ~uI
AJ ;sJ
ðnJ ; sJÞ ¼ �nJ

dcwI
n

ds
wI

A, (A.55)

3 ~uI
AJ ;zJ
ðnJ ; sJÞ ¼ UA cos f� VI

A sin fþ
b

2
bI

A � cwI
n wI

A sin fþcWI
z WI

A cos f, (A.56)

3 ~uo
AJ ;nJ
ðnJ ; sJÞ ¼ �sJb

o
A sin f� sJyA cos f�

b

2
sJW

o
A sin fþ cwo

n wo
A cos f, (A.57)

3 ~uo
AJ ;sJ
ðnJ ; sJÞ ¼ �Vo

A þ
b

2
bo

A sin fþ
b

2
yA cos fþ

bh

bþ h
wo

A � nJ
dcwo

n

ds
wo

A, (A.58)

3 ~uo
AJ ;zJ
ðnJ ; sJÞ ¼ sJb

o
A cos f� sJyA sin fþ

b

2
sJW

o
A cos fþ cwo

n wo
A sin f. (A.59)

On Edge 4

4 ~uI
AJ ;nJ
ðnJ ; sJÞ ¼ cwI

n wI
A, (A.60)

4 ~uI
AJ ;sJ
ðnJ ; sJÞ ¼ �UA sin f� VI

A cos f� nJ
dcwI

n

ds
wI

A cos f� cWI
z WI

A sin f, (A.61)

4 ~uI
AJ ;zJ
ðnJ ; sJÞ ¼ UA cos f� VI

A sin f� sJb
I
A � nJ

dcwI
n

ds
wI

A sin fþ cWI
z WI

A cos f (A.62)

4 ~uo
AJ ;nJ
ðnJ ; sJÞ ¼ �Vo

A � sJyA cos f� sJb
o
A sin fþ cwo

n wo
A, (A.63)

4 ~uo
AJ ;sJ
ðnJ ; sJÞ ¼

h

2
yA cos fþ

h

2
bo

A sin f�
h

2
sJW

o
A sin f�

bh

bþ h
wo

A cos f� nJ
dcwo

n

ds
wo

A. (A.64)

4 ~uo
AJ ;zJ
ðnJ ; sJÞ ¼

h

2
bo

A cos f�
h

2
yA sin f�

h

2
sJW

o
A cos fþ

bh

bþ h
wo

A sin f (A.65)
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